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Goals of this talk

1. Motivation for DxEx project
2. What did I learn?

– Technical / Tactical
– Leadership / Strategy

3. Next Steps
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Part 1 – (semi)-autonomous diagnosis in PAD

Part 2 – Experiential Learning

Part 3 – Next steps
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(Semi)-autonomous diagnosis in PAD

Part 1 – Diagnosis in PAD
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Why can’t rely on human clinicians?

Part 1 – Diagnosis in PAD
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Humans alone aren’t enough for PAD population health

1. Clinicians, on average, lack the knowledge, skill, 
inclination, and resources to reproducibly close the 
diagnostic loop in PAD
– Knowledge
– Skill (e.g. performing vascular ultrasound)
– Inclination (e.g. )
– Resources (e.g. vascular lab)

2. Patient awareness of PAD is low
– Poor baseline knowledge
– Poor retention

3. Patient-provider communication isn’t scalable
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Clinical interviews are inherently non-scalable due to 
structural aspects of communication
1. Patient-provider communication is often multi-turn
2. Very limited opportunities for  1:mpeople communication are inversely proportional to the 

conversation’s depth/sensitivity. 

– for a geriatric patient with her daughter 
– Taking a focused history from a teen who you suspect is being abused by family 

member

3. Filtered through various kinds of “non-random error associated with increased delta between 
reality and perception”
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Clinical Scenario 1:m Comm Opp Depth of Comm

Preoperative bariatric surgery information session conducted 
by a nurse

High Shallow

taking a typical history and physical for a geriatric patient 
with her daughter 

Moderate Medium

Taking a focused history from a teen who you suspect is 
being abused by family member

Very low Deep
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We need human-machine hybrid 
systems…
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Focusing on systems

Part 2 – Experiential Learning
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Hierarchical components of a clinical socio-technical system

• {Service} (class: Clinical, research, administrative, legal, logistical, business)
– Clinical {activity} composed of Tasks (thinking, doing, recording, 

communicating) with Purposes (diagnosis, prognosis, treatment selection)

oData processing {pipeline}

➢machine {agents}

❖Deep learning {models}
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2. Clinical {activity}

• Task (output): thinking, doing, recording, communicating
• Purpose (1st principles): diagnosis, prognosis, treatment selection

3. Data processing {pipeline}
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5. Deep learning {models}
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iCHAI DECODE framework 
for developing & deploying 
clinical AI systems

Part 2 – Experiential Learning
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iCHAI Conceptual model {end-to-end ML Dev-Dep pipeline}
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{end-to-end ML Dev-Dep pipeline} 
is modular & model agnostic
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{end-to-end ML Dev-Dep pipeline} 
is modular & model agnostic

 swapable
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A framework for real-world performance

Part 2 – Experiential Learning
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Which domains of performance matter in 
the real world?
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Original Evaluation Framework

Table 1. iCHAI E3 Evaluation framework for clinical AI systems

Data Deep Learning Model Downstream Task
(or chained system) (Clinical or pop. Health)

Efficacy

Efficiency

Equity
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Original Evaluation Framework
Table 1. iCHAI E3 Evaluation framework for clinical AI systems

Data Deep Learning Model 
(or Chained System)

Downstream Task 
(clinical or pop. health)

Efficacy Discussion

Experiments

Deliverable

Efficiency Discussion

Experiments

Deliverable

Equity Discussion

Experiments

Deliverable
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Revised Evaluation Framework

Table 1. iCHAI A2 Evaluation framework for clinical AI system minimal viability

Input Data Output Predictions
Deterministic Generative

Accuracy Observability of the 
training data? 

Transparency labelling 
ontology? Provenance of 

the labeling process?

Can we verify if given the 
data the model is attending 

to? (e.g. a text snippet)

Would this change clinical 
management? (decision 

focused)

Alignment In the real-world, is this 
how the input data will 

look with respect to format 
and content?

Format and content you want to see at the point of care? 
Do providers make better decisions in response to this 

digital health intervention?
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Improving performance – let’s take 
a trip to the dojang
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{end-to-end ML Dev-Dep pipeline} 
is modular & model agnostic

 swapable

{Model}
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{end-to-end ML Dev-Dep pipeline} 
is amenable to clinical-technical optimization

 swapable  in the 
loop

{Model}
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{end-to-end ML Dev-Dep pipeline} 
is amenable to clinical-technical optimization

 swapable

1. More Data
2. Prompt Tuning
3. Hyperparameter 

Optimization
4. Fine Tuning

 in the 
loop

{Model}



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

{end-to-end ML Dev-Dep pipeline} 
is amenable to clinical-technical optimization

 in the 
loop



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

{end-to-end ML Dev-Dep pipeline} 
is amenable to clinical-technical optimization

 in the 
loop



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

{end-to-end ML Dev-Dep pipeline} 
is amenable to clinical-technical optimization

 in the 
loop



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

{end-to-end ML Dev-Dep pipeline} 
is amenable to clinical-technical optimization

 in the 
loop



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

Current Status

Part 2 – Experiential Learning
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Studies to evaluate “non-random error associated with 
increased delta between reality and perception”

1. Ablation
– Systematically remove demographics and evaluate model performance
– For generative tasks vary demographics and see if prediction changes

2. Reverse prediction
– Predict demographics instead of outcomes

3. Differential performance
– Our model, your data

– Our data, your model
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Working Titles H0 testing Reviews Viewpoints
Impact of race, gender, and age on LLM based diagnosis of 
Peripheral Arterial Disease from provider narratives X
Assisting sources of error in machine-based diagnosis of 
Peripheral Arterial Disease  X
Adaptive Performance Benchmarking in Healthcare 
Foundational Models: the need for a national assurance lab X
Beyond Explainability – How to build trustworthy systems in 
clinical machine learning X
The culture divide between medicine and Silicon Valley: 
causes, implications, and a path forward X
Escaping the AI Hype Cycle: refocusing healthcare AI on 
problems that matter X
A {roadmap, playbook} for successful academic industry 
partnerships in healthcare AI X
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Part 3 – Next steps
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Subproblems with different boundary conditions:

}   lim
 0→1 

𝑣 𝑥  = 𝒗𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚
}   lim

1→100
𝑠 𝑦  = 𝒔𝒄𝒂𝒍𝒆

}       𝑣(𝑥)  ≠ 𝑠(𝑦) 
} pilot 𝑣(𝑥) , 
 if viable >1, get($)
 else, die trying
} deploy ($), solve 𝑠(𝑦)
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Funding to Impact Plan
1. K23 received a 29 impact score.

– Aim 1. Design and validate a large language model (LLM) capable of extracting and 
summarizing PAD information from unstructured notes. 

– Aim 2. Co-design a minimally viable prototype for a “clinician in the loop” automated 
chart review (ACR) platform. 

2. Plan for R21 to R01 pipeline.
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Implementing iCHAI trustworthiness 
framework for future grants and projects
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Implementing iCHAI trustworthiness 
framework for future grants and projects

Choice 1  - ALCHEMI Lab 
Applied Learning in Clinical 
Healthcare Empowered by 

Machine Intelligence

Choice 2 - ELACHI Lab 
Evidence-based Learning and 
Analytics for Clinical Healthcare 

Insights



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

iCHAI Trustworthiness Framework
Data Model Output Implementation

Observability
(of training data)

Clinical 
Interpretability

Accuracy 
(factually correctness)

Safety
(does system cause harm)

Transparency 
(of ontology)

Mechanistic 
Interpretability

Alignment
(clinical setting dependent)

Sustainability 
(w/respect to resources)

Provenance
(of labels)

Validity
(internal and external)

Verifiability
(by humans or machines)

Reliability 
(across clinical scenarios)
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Guiding Principles for Healthcare AI model development, pipeline 
deployment, and system implementation 
1. System trustworthiness ≠ Trusted by humans

2. Trust is an essentially subjective human feeling… the ultimate human-on-the-loop safeguard.

– Why?: Cannot be programed; unlikely to be an emergent behavior that can be described by a 
differential equation and optimized with a loss function

o Caveat: Trust itself is an essentially human phenomenon, but machines can be programed to 
determine if a human would likely trust an output in a particular situation.

3. Trust is much easier to lose than to build.

4. Building trustworthy systems is as easy as its every going to be.

– Current state: machine-human hybrid systems are (presumably) non-adversarial and tasked with 
solving relatively easy problems

– Future state: Running out of training data….what if every agent isn’t playing for the same team?
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Transitioning to multi-modal 
models implemented in multi-
agent systems



INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

INDIANA UNIVERSITY SCHOOL OF MEDICINE
Department of Surgery | Division of Vascular Surgery

REGENSTRIEF INSTITUTE
Center for Health Services Research

Hierarchical components of a clinical socio-technical system

1. {Service} (class: Clinical, research, administrative, legal, logistical, business)
2. Clinical {activity}

• Purpose: diagnosis, prognosis, treatment selection
• Task: thinking, doing, recording, communicating

3. Data processing {pipeline}
4. machine {agents}
5. Deep learning {models}
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Example 1 – MV{e}  
Image-text pair(s)

Initially, there was a short segment near-
occlusive lesion of the proximal right AT,…

After treatment with a 4 mm x 6 mm Lutonix…

…the proximal AT lesion resolved with no 
significant residual stenosis, the

Lesion Lat. Vessel Location State, pre-
treatment

Treatment State, post-
treatment

Tx, 
Response

Image, 
pre

Image, 
post

PL-298 Right Anterior 
tibial 

artery

Proximal 
1/3

Near occlusive 
stenosis

4 mm Lutonix Min residual 
stenosis

Adequate Img_pl298
_1

Img_pl298
_2

1

2
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Example 2 – Real world  
Image-text pair(s)

Initially, there was a short segment near-
occlusive lesion of the proximal right AT, a 
second short segment near occlusive lesion of the 
mid AT, a short segment moderate stenosis of the 
proximal right TP trunk, a short segment near 
occlusive lesion of the right peroneal artery.

After treatment with a 4 mm x 6 mm Lutonix…

…the proximal AT lesion resolved with no 
significant residual stenosis, the mid-AT lesion 
improved but had a 30% residual stenosis relative 
to the adjacent normal artery, the proximal TP 
trunk lesion had minimal residual stenosis but 
did not dilate up to the adjacent TP trunk 
artery, the proximal peroneal lesion resolved 
with no significant residual stenosis.
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Questions…?

andrewg@iu.edu

@dragonzMD (Insta)

@dragonzMD (twitter)
50 - Regenstrief Institute

Center for Aging Research - Regenstrief Institute

mailto:andrewg@iu.edu
https://www.instagram.com/dragonzmd/
https://www.instagram.com/dragonzmd/
https://twitter.com/DrAGonzMD
https://www.regenstrief.org/person/andrew-gonzalez/
https://medicine.iu.edu/faculty/47578/gonzalez-andrew
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Supplementary Content
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The role of Equity in Healthcare AI
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Winning at equity with 4D Chess

1. Development

2. Data

3. Deployment

4. Decisions
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Equity Considerations, a 4D Chess Approach
Set up Level Development Data Deployment Decisions

Player Individual / 
Institutional

Opponent Individual / 
Institutional

The Board System
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Considerations for model building

1. Data needed to build a model (type and amount)

2. What do you want the model to predict?

3. Output in a useful form for end-users in a system that will listen to those users 
(nudges and legitimacy; beware Semmelweiss)
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